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Abstract

Coastal communities worldwide have a vested economic
interest in monitoring wave properties in real time. Here,
two neural network architectures are applied to learn wave
height and wave period from cropped and downsampled
video data sourced from the surf condition website, Sur-
fline.com. While a traditional ConvNet architecture per-
formed poorly in terms of predicting the wave parameters,
a ConvLSTM-based network demonstrated significant im-
provements, and predicted the wave characteristics with
accuracy comparable to recent work in this field. Results
indicate that recurrent neural networks show particular
promise in predicting wave conditions from video data, and
future work should focus on fine-tuning these methods and
applying them to different coastal regions.

1. Introduction
Despite only comprising 10% of our nation’s land area,

approximately 40% of the population lives in a coastal
county. These regions are both vital economic hubs, and
popular destinations for recreation. Proximity to the ocean,
however, comes with risks, including damage to property
and infrastructure from waves and storm surge. There-
fore, it is in the economic best interest of coastal com-
munities to monitor wave conditions in real time, allowing
them to plan for recreation and potentially dangerous storm
events. However, this level of monitoring generally requires
in situ pressure transducers, which are expensive and diffi-
cult to properly deploy. There is, however, a widely avail-
able dataset that provides qualitative wave conditions: Sur-
fline.com maintains a network of cameras across the coun-
try with live streams of beaches and waves for the purpose
of informing surf conditions.

The goal of this project was to leverage Surfline’s
database to predict wave height and wave period, two com-
mon parameters that are widely used to inform shoreline
recreation and coastal infrastructure design. Specifically,
the input to our model was Surfline video footage from the

Scripps Pier in La Jolla, CA [7]. These data were fed to
two algorithms, a traditional Convolutional Neural Network
(CNN) and a hybrid Long Short-Term Memory Convolu-
tional Nueral Network (ConvLSTM). Each of these models
output a predicted wave period and wave height, which were
compared to wave period and height measurements col-
lected adjacent to the video camera using traditional pres-
sure sensors. If the wave parameters can be predicted with
reasonable accuracy using only the video data, then the al-
gorithm presented here could potentially be trained on other
Surfline video feeds, providing cheap and reliable estimates
of wave conditions across the world.

2. Related Work
For decades, and indeed up to the present day, the most

common way to measure wave statistics was using pressure
sensors deployed in the water [6]. By measuring the time-
varying pressure changes that accompany wave-induced de-
flections of the water surface, the dominant wave period
and wave height can be determined via spectral analysis
[2]. While these methods are reliable, the necessary instru-
mentation is expensive and requires significant expertise to
properly deploy. It is also common for pressure sensors to
be lost or buried during storm events, or for the electron-
ics housing to flood due to improper maintenance. And
while high-frequency radar measurements have been used
as a land-based alternative [3], they can be prohibitively ex-
pensive and difficult to operate.

The task of estimating wave statistics along our coasts
could clearly benefit from a cheaper and easier measure-
ment technique. Recently, machine learning algorithms
have been applied to predict wave height from physics-
based model outputs [4], and in situ accelerometer data [5].
Results have been promising, but still require significant ef-
fort in either model setup or data collection. However, a new
study by [1] demonstrated the utility of CNNs in predicting
wave height and period from static coastal image data. In
that work, a number of pre-trained CNNs were tested on
shorline image data, and it was found that MobileNetV1
and Inception-ResNetV2 generally offered the best predic-

1



tive performance, with RMS errors of 0.14 m and 0.41 s for
wave height and period, respectively.

Here, that work will be expanded upon by training a cus-
tom CNN architecture on Surfline video footage. In this
way, we will be able to determine whether video data of-
fers significantly increased predictive capability over static
image data. This will also enable us to compare different
architectures, including recurrent neural networks (RNNs),
which are tailored for processing time-varying data.

3. Methods
Two methods were attempted to solve this regression

problem. In the first, video data were fed into a standard
CNN architecture implemented in Pytorch, with a pipeline
as shown in 1 below.

([conv→ ReLU→ Dropout→ Batchnorm]× 2

→ MaxPool)× 2→ Linear (1)

The convolutions operated on each frame of the video,
treating each frame as a separate channel (see Section 4
for preprocessing details). Model parameters were cho-
sen by minimizing the validation error on 40 videos,
chosen randomly from a 400 video subset of the full
dataset. Conv layer sizes were iterated over sizes from
the set [4, 8, 16, 32, 64], dropout was iterated over proba-
bilities [0.1, 0.3, 0.5, 0.7], and the learning rate was iter-
ated over the range [1e-6, 1e-2]. Batch sizes were tested at
[4, 8, 20, 40, 60, 90, 120], and number of iterations for each
batch was tested at [100, 200, 400, 800]. Optimization was
performed using the Adam algorithm, minimizing the mean
squared error.

After this procedure, it was found that the lowest valida-
tion error was achieved with conv layer sizes of 32, 32, 16,
and 8 filters, respectively. Each layer had a kernel size of
3 × 3 and zero-padding of 1. Dropout was set to p = 0.5
for regularization, and each MaxPool layer kernel was size
2×2. The optimal learning rate was lr = 5×10−4, with an
optimal batch size b = 90, and 400 epochs for each batch.

Figure 1 shows the model prediction on the validation
set with the parameters chosen from this procedure. As in-
dicated by the coefficient of determination, r2, the model
predicts wave height rather poorly, but predicts wave period
with reasonable accuracy. A deeper network architecture
was tested as well (4 conv-ReLU-Dropout-Batchnorm lay-
ers rather than 2), but the accuracy did not improve so the
simpler model was retained.

Because of the questionable performance of model 1,
a model more suited to video data was also tested. For
this, we chose the ConvLSTM introduced by [9], and im-
plemented in Keras. The ConvLSTM architecture lever-
ages the spatial awareness of CNNs and embeds them in a

time-resolving RNN framework. While a traditional LSTM
would receive a 1D vector as an input at each time step, the
ConvLSTM accepts the 3D (or in our case, 2D) image, per-
forming convolution operations for each frame. The model
architecture that we chose is shown in 2 below.

ConvLSTM2D32 → ConvLSTM2D16 → Linear (2)

Here, the subscript on ConvLSTM2D refers to the num-
ber of filters. Similar to the parameter sweep for model
1, we optimized the number of filters at each layer, along
with the kernel size. The minimum mean squared error op-
timized with the Adam algorithm was achieved with 32 and
16 filters, and kernel sizes of 5× 5 and 3× 3 in the first and
second ConvLSTM layers, respectively. The learning rate
was set at lr = 1 × 10−4. Due to time constraints, this op-
timization was performed on a much smaller subset of the
data, so these parameters may not generalize well.

4. Dataset and Features
The raw data consisted of 10-minute .mp4 video files

downloaded from Surfline.com. A total of 20 days of video
were downloaded, spanning April 17, 2020 to May 7, 2020.
Videos were only processed if they were filmed between
0600 and 1930 to ensure adequate sunlight. This resulted in
a total of 1600 total videos, 80% of which were ultimately
used for training. The remaining 20% were split into two
equally-sized sets, one for validation and the other for hold-
out testing.

Each video was filmed at 25 frames per second (fps), and
each 3-channel color frame measured 720× 1280 pixels. It
would have been prohibitively expensive to process the full
videos; therefore, each video was downsampled to a frame
rate of 1 fps, which still allowed for resolution of wave fre-
quencies up to the Nyquist frequency of 0.5 Hz. Given the
average wave conditions at the study site [8], this level of
downsampling should not negatively affect the wave period
estimation. The videos were also shortened to 1 minute,
resulting in a temporal dimension of 60 frames.

Next, the downsampled video data were converted to
grayscale, and cropped at the top and bottom to exclude the
sky and beach, respectively. They were then further cropped
to reduce the image width by a factor of two, resulting in a
frame dimension of 340 × 640 pixels. Finally, each frame
was resized to a dimension of 128× 128 pixels, resulting in
a final video input of 60 × 128 × 128. During the course
of training the model, other input dimensions were exper-
imented with, including 256 × 256 pixels, and 256 × 128
pixels, but these higher-resolution images did not improve
model performance. Example frames from the processed
input videos are shown in Figure 2.

The ground truth data (wave period and height) are col-
lected by pressure sensors mounted on the Scripps pier by
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Figure 1. Predicted vs measured wave height (r2 = 0.05) and period (r2 = 0.49) on the validation set.
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Figure 2. Six consecutive frames from a processed Surfline video.

the Scripps Institute of Oceanography (SIO). The data are
transmitted to a SIO server, where they can be downloaded
directly [8]. The data are reported at hourly intervals, so
they were first upsampled to a frequency of one measure-
ment every 10 minutes, corresponding to the frequency of

the video data. These 10-minute data were then interpolated
onto the same time vector as the video data. Because wave
conditions vary primarily over tidal timescales (i.e., on the
order of 6 hours) and longer (e.g., with daily wind patterns)
[2], this level of interpolation should introduce negligible
error in the regression.

During model training, standard normalization tech-
niques were applied to the ground truth data, including de-
trending and normalizing by the standard deviation. How-
ever, these procedures appeared to decrease the model accu-
racy, so ultimately the model was trained on unnormalized
input images and ground truth data.

5. Results and Discussion
Applying model 1 to the full training set resulted in poor

performance for both wave height and wave period on the
hold-out test set, as shown in Figure 3. Neither metric was
predicted with a positive coefficient of determination, and
the RMS error for wave height and period were 0.25 m,
and 1.18 s respectively, which are both significantly higher
than the errors reported in [1]. The wave height prediction
fails to capture the ground truth trends, while the wave pe-
riod prediction displays significant bias, nearly always over-
predicting the true wave period. One potential reason for
this failure is that the parameters chosen based on the op-
timization procedure described in Section 3 did not gener-
alize well to the full training set. Indeed, results improved
slightly when increasing the training batch size from b = 90
to b = 160, but there was not enough time to attempt a full
parameter sweep.

In order to further probe these disappointing results, Fig-
ure 4 shows the training and validation errors output after
400 iterations on each batch of 160 videos. Though the
training error decreases substantially, the validation error

3



0.6 0.8 1.0 1.2 1.4
Measured

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Pr

ed
ict

ed

Wave height (m)

4.5 5.0 5.5 6.0
Measured

4

5

6

7

8

Pr
ed

ict
ed

Wave period (s)

Figure 3. Predicted vs measured wave height (r2 = −0.10) and period (r2 = −5.88) on the test set for the standard ConvNet architecture
(model 1), with the one-to-one line shown in orange.
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Figure 4. Training and validation errors for the standard ConvNet
architecture (model 1).

remains high, indicating that the model may be overfitting
the training data. This is surprising given the aggressive
dropout parameter p = 0.5 applied after each ReLU layer,
but clearly more work remains to be done in tuning model
architecture 1 to this dataset.

Rather than fine-tune model 1 ad nauseam, we next ap-
plied the ConvLSTM architecture (model 2) to the full train-
ing set. The results on the test set were much more promis-
ing, as shown in Figure 5. The RMS errors in this case were
0.17 m and 0.4 s for the wave height and period, respec-
tively, which are quite similar to the results described in [1].
Both the bias and variance around the ground truth values
are improved compared to Figure 3, though the model of-
ten overpredicted the wave height at smaller measured wave
heights, as indicated by the cluster of predictions between
measured values of 0.6–0.8 m, and underpredicted at larger
measured wave heights, especially beyond 1.2 m. On the

other hand, the trend in the wave period is captured quite
faithfully, though there is more variance around the one-to-
one line.

The training behavior for the ConvLSTM architecture,
shown in Figure 6, reflects the improved performance. Un-
like the ConvNet architecture, where we trained each batch
for a fixed number of iterations, the ConvLSTM model was
trained with an early stopping condition on each batch, such
that the training stopped if the validation error did not im-
prove after 5 iterations. As such, the “epochs” in Figure 6
could more precisely be termed “iterations on each batch”.

The validation error, though noisier, is not significantly
larger than the training error, and both generally decrease
with training iterations. Given these results, it may be that
the model is underfitting, and could benefit from increased
model complexity. While there was not sufficient time to
test a larger (i.e., more filters) or deeper model (i.e., more
layers), the results presented in Figure 5 are encouraging,
and indicate that the ConvLSTM architecture is well-suited
for extracting information from video data.

6. Conclusions and Future Work
Among the two architectures that were tested on the Sur-

fline video dataset, the ConvLSTM network clearly out-
performed the standard ConvNet architecture in predicting
both wave parameters. This is not necessarily surprising,
as RNN-based methods are designed explicitly for time se-
ries input. The ConvLSTM training behavior, which did not
indicate overfitting, suggests that a more complex model
could improve predictions even further. Given more time
to fine-tune the model architecture, and a larger training set,
a ConvLSTM-based model could prove quite robust in pre-
dicting wave parameters from video data.
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Figure 5. Predicted vs measured wave height (r2 = 0.51) and period (r2 = 0.21) on the test set for the ConvLSTM model (model 2), with
the one-to-one line shown in orange.
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Figure 6. Training and validation errors for the ConvLSTM archi-
tecture (model 2).

Aside from model architecture, future work could focus
optimizing input data characteristics. In particular, the in-
put pixel resolution (especially in the height) could exert a
strong control on the wave height prediction. The width of
the input image may also affect the prediction, as a narrower
frame may not adequately resolve the lateral variability in
wave characteristics. For example, alongshore variations
in the seabed could bias wave heights at a particular loca-
tion relative to the ground truth measurements; this could
be addressed by feeding the model a wider frame. Further-
more, our training set only consisted of 1280 videos. Given
the widespread availability of training data, the model could
easily benefit from a larger training set. Overall, the results
presented here represent an encouraging first step in predict-
ing wave parameters based on publicly available video data,
and will hopefully inspire future work on this important and
challenging problem.

7. Contributions
This project, including all data processing, model setup,

analysis, and writing was completely independently by the
sole author.

References
[1] D. Buscombe, R. J. Carini, S. R. Harrison, C. C. Chickadel,

and J. A. Warrick. Optical wave gauging using deep neural
networks. Coastal Engineering, 155:103593, 2020.

[2] R. G. Dean and R. A. Dalrymple. Water wave mechanics for
engineers and scientists, volume 2. World Scientific Publish-
ing Company, 1991.

[3] H. C. Graber and M. L. Heron. Wave height measurements
from hf radar. Oceanography, 10(2):90–92, 1997.

[4] S. C. James, Y. Zhang, and F. O’Donncha. A machine learning
framework to forecast wave conditions. Coastal Engineering,
137:1–10, 2018.

[5] T. Liu, Y. Zhang, L. Qi, J. Dong, M. Lv, and Q. Wen. Wavenet:
learning to predict wave height and period from accelerometer
data using convolutional neural network. In IOP Conference
Series: Earth and Environmental Science, volume 369, page
012001. IOP Publishing, 2019.

[6] M. S. Longuet-Higgins. On the statistical distribution of the
height of sea waves. Journal of Marine Research, 11:245–
266, 1952.

[7] D. Sellin. Scripps Pier, Northside Surf Report and Forecast,
2020 (accessed April 22 - May 20, 2020).

[8] SIO. Scripps Pier Station Data Home Page, 2020 (accessed
May 15, 2020).

[9] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong,
and W.-c. Woo. Convolutional lstm network: A machine
learning approach for precipitation nowcasting. In Advances
in neural information processing systems, pages 802–810,
2015.

5


